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A Posteriori Error Determination and Grid 
Adaptation for AMR and ALE Computational 
Fluid Dynamics 

Giovanni Lapenta 

Theoretical Division, Los Alamos National Laboratory, Los Alamos NM87546, USA 

Abstract. We discuss grid adaptation for application to AMR. and ALE codes. Two 
new contributions are presented. First, a new method to locate the regions where 
the truncation error is heing created clue to an insufficient accuracy: the operator 
recovery error origin (OREO) detector. The ORE0 detector is automatic, reliable, 
easy to implement and extremely inexpensive. Second, a new grid motion technique 
is presented for application to ALE codes. The method is based. on the Brackbill- 
Saltzman approach biit it is directly linked to the ORE0 detector and moves the grid 
automatically to minimize the error. 

1 Introduction 

Grid adaptation can be achieved by grid refinemcnt (Le. adding more grid points) 
in some selected areas or by grid motion (i.e. moving grid points to  regions of 
interest from regions of lesser interest). In the first, case, the AMR. method [2] 
is obt,ained. In the second case, the ALE met,liod [4] is obtained. In both cases 
we need guidance. We need to know what interesting mean. Often, interest is 
defined bascd on the knowledge of tlie solution. If we know the solution, we 
know where more accuracy is required. However, we do not,, in general, know 
the solution. So we need error detectors which tell l i s  where the error is larger. 

The present paper describes a new error detector: the operator recovery error 
origin (OR.EO) detector [6]. 

For AMR. codes, the ORE0 detector provides accurate and automatic deter- 
mination of where the discretization error is being generated. This knowledge is 
directly used by tlie AMR. method to refine or to coarsen. 

For ALE codes, tlie knowledge of the error needs to be supplemented by a 
method to move the grid. Given the error what, new grid should we use? To 
answer this additional problem typical of the ALE method we also present a 

hniyue citelapcnta based on the Bracltbill-Saltzman approach [8]. 
I Examples arc presented to illustrate the new methods. 

2 Operator Recovery Computation of the Local 
Truncation Error 

In a previous paper [6], we have proposed a new error origin detector based on 
tlie extension of the gradient recovery error estimato'r [l]. We have named the 
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approach operator recovery error ori<qin (OREO) detector since it extends to any 
operator the method used for the gradient operator by the gradient recovery error 
estimator. Below, we summarize briefly the procedure involved in its definition 
and implementation. 

For the sake of definiteness, we shall assume a general N-dimensional grid 
(where one of the dimensions could be time) where a vector field vn is node 
centered. For notation, we label the cells with c and the nodes with n, using 
further the notation n(c) to indicate the nodes neighboring cell c and c(n) to  
indicate the cells neighboring node n. 

We consider a general multi-dimensional non-linear partial differential oper- 
ator: 

Equation (1) summarizes the most general operator acting on a function q (x )  
defined on the miiltidimensional space x. 

w?) (1) 

Equation (1) is discretized on a grid with N nodes x,,: 

OdSl  I . . I 9 N )  (2) 

From the discretized field qn and from the discretized operator X,, applied 
to qn defined only on the grid nodes, it is possible to reconstruct two functions 
defined everywhere in the continuum space x: 

where C is the operator representing the multilinear (e.g., linear in lD, bilinear 
in 2D) interpolation from the grid points. 

The local truncation error is defined as the difference between the linear 
interpolation of the discretized operator applied to the discretized field X,(x) 
and the exact differential operator applied to the linear interpolation of the 
discretized field F(x): 

e = 6(x) - @(x) (4) 

The average local truncation error on any given cell c is defined as the Lz 
norm: 

\ 112 

where e, is the average local truncation error over cell c and V, is the cell volume. 

3 Variational Grid Adaptation Based on Error Indicators 

We have recently proposed a new approach [5] to variational grid adaptation [8] 
based of the local truncation error defined above. The method can be constructed 
starting from the following equidistribution theorem proven in R,ef. [5] 
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TIIEO~TSM:  ln a optimal grid, defined as a grid that minimsizes the local tmm- 
cation error according to the m,inimzation principle 

the product of Me local trimcation error in any cell i b y  the cell iiolume Vi (given 
b y  the Jacobian ,J = 4) is constant: 

(7) ei& = const 

Tlie eqiiiclist,ribut,ion thorem is applied solving the following Euler-Lagrange 
equations: 

This approach creates a grid where IeilVi is constant. Note that the equations 
above are identical to the equations used by the Brackbill-Saltzman variable 
diffusion method [8]. The primary innovation is that the monitor function i s  now 
directly linked with the local truncation error instead of being left undefined. 
In the t,ypical implementations of the Brackbill-Saltzman m e t h d ,  tihe monit,or 
€tinction i s  defined lieiiristically by tlie user. The use of the OR.EO datect,or 
proposed here results in a more accurate scheme [SI. 

4 ALE Example 

We have applied the grid rezoning described above to a stanclard ALE code [4,7] 
and we have tested it in a number of problems. Here we limit the discussion to 
the classic spherical 1D implosion test proposed by Noli [9]. A gas with y = 6/3 
initially has p = 1, I: = IO-" and uniform velocity IL  = -1 (except in the 
center where u(r  = 0) = 0). The problem represents a serious challenge for 
Lagrimngian calculations and the solution is known to suffer from serious wall 
heating due to the use of artificial viscosity to capture shocks. Note that we 
are not using artificial heat conduction [9] (a tool to mitigate the wall heating 
problem) precisely to highlight the trouble of Lagrangian calculations for the 
present caSe . 

The resiilts of an ALE cdculation using the adaptive grid is compared with 
a reference standard Lagrangian calculation. Figure 1 shows the density at the 
end of the Lagrangian and ALE calculation. The use of adaptive grid results 
in a much improved soliit,ion. The reason for the improvement is explained by 
the sharper resolution of the shock achieved by tlie adaptation. As noted in 
the original paper by Noli [9], a sharper resolution of the shock also implies a 
reduction of wall heating, as obseved in Fig. 1 for the ALE case. 

Tlie use of grid adaptation based on the OR.EO detector results in an auto- 
matic method to increase the accuracy of the ALE method. 
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Fig. 1. Noh’s spherical benchmark: comparison of the density at the end (t  = 0.6), 
for a Lagrangian (rlasherl) and ALE (solid line) calciilation. The exact soInt,ion is also 
shown (dotted line). 

4.1 AMR Example 

To investigate the performance of the OR.EO detector in 2D, we have applied it 
to  results obtained with CLAWPACK [lo]. CLAWPACK is a publicly available 
software [ll] based on an AMR, solution [2] of tlie conservation laws. We have 
applied the code to the solution of the gas dynamics equations for the Colella’s 
wedge problem [3]. A planar M = 10 shock is incident on an oblique surface; tlie 
angle between the shock direction and the surface is r/G. Tlie actual computed 
results at time t = 0.2 for a 240x120 grid are shown in Fig. 2 where all the 
expected features [3] can be recognized. 

The OR.EO detector is computed based on the results obtained from CLAW- 
PACK using Algorithm 3. The detector is shown in Fig. 3 for a simulation with 
a grid 120x60. For comparison we also provide an estimate of the actual error, 
comput,ed by difference between the solution on a 120xGO grid and the more 
accurate solution on a 240x120 grid. Clearly the OR.EO detector is successful 
in detecting all origins of errors. The shocks are all captured; the slip surface 
rolling up under the shock is evident. All features are detected. 

For reference, Fig. 3-c shows also a similar analysis conducted on another 
possible candidate for error detection often used in the literature. The detector, 
which we name warp indicator for convenience, measmre tlie local error as the 
variance among tlie different valiies obtained at a node when extrapolating the 
internal energy from the four directions (backward and forward along x and 
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Fig. 3. 2D Gay Dynamics - Colella's benchmark on a 120x60 grid at t = 0.2. Com- 
parison of the global truncation error (a) with the OR.EO detector (b), and the warp 
indicator (c). 
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